949 resultados para mast cell tumour


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This was a retrospective study including ninety samples of dogs with a histological diagnosis of intermediate grade cutaneous mast cell tumour (MCT). The objectives of the study were to validate Minichromosome Maintenance Protein 7 (MCM7) as a prognostic marker in MCTs and to compare the ability of mitotic index (MI), Ki67 and MCM7 to predict outcome. The median survival for the entire population was not reached at 2099 days. The mean survival time was 1708 days. Seventy-two cases were censored after a median follow up of 1136 days and eighteen dogs died for causes related to the MCT after a median of 116 days. For each sample MI, Ki67 and MCM7 were determined. The Receiver Operating Characteristic (ROC) curve was obtained for each prognostic marker to evaluate the performance of the test, expressed as area under the curve, and whether the published threshold value was adequate. Kaplan-Meier and corresponding logrank test for MI, Ki67 and MCM7 as binary variables was highly significant (P<0.0001). Multivariable regression analysis of MI, Ki67 and MCM7 corrected for age and surgical margins indicated that the higher risk of dying of MCT was associated with MCM7 > 0.18 (Hazard Ration [HR] 14.7; P<0.001) followed by MI > 5 (HR 13.9; P<0.001) and Ki67 > 0.018 (HR 8.9; P<0.001). Concluding, the present study confirmed that MCM7 is an excellent prognostic marker in cutaneous MCTs being able to divide Patnaik intermediate grade tumours in two categories with different prognosis. Ki67 was equally good confirming its value as a prognostic marker in intermediate grade MCTs. The mitotic index was extremely specific, but lacked of sensitivity. Interestingly, mitotic index, Ki67 and MCM7 were independent from each other suggesting that their combination would improve their individual prognostic value.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Irnmunohistochcmical expression of BAX was evaluated in 24 canine cutaneous mast cell tumours in order to verify the relationship of this expression to the histopathological grade of the lesions and its prognostic value for clinical outcome. BAX expression increased with higher histopathological grades (P = 0.0148; P < 0.05 between grades I and III). Animals with high levels of BAX expression were 4.25 times more likely to die from the disease and had shorter post-surgical survival times (P = 0.0009). These results suggest that alterations in BAX expression may be related to the aggressiveness of canine cutaneous mast cell tumours, indicating that immunohistochemical detection of BAX may be predictive of clinical outcome. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FES protein-tyrosine kinase (PTK) activation downstream of the KIT receptor in mast cells (MC) promotes cell polarization and migration towards the KIT ligand Stem cell factor (SCF). A variety of tumours secrete SCF to promote MC recruitment and release of mediators that enhance tumour vascularization and growth. This study investigates whether FES promotes MC migration via regulation of microtubules (MTs), and if FES is required for MC recruitment to the tumour microenvironment. MT binding assays showed that FES has at least two MT binding sites, which likely contribute to the partial co-localization of FES with MTs in polarized bone marrow-derived mast cells (BMMCs). Live cell imaging revealed a significant defect in chemotaxis of FES-deficient BMMCs towards SCF embedded within an agarose drop, which correlated with less MT organization compared to control cells. To extend these results to a tumour model, mouse mammary carcinoma AC2M2 cells were engrafted under the skin and into the mammary fat pads of immune compromised control (nu/nu) or FES-deficient (nu/nu:fes-/-) mice. A drastic reduction in tumour-associated MCs was observed in FES-deficient mice compared to control in both mammary and skin tissue sections. This correlated with a trend towards reduced tumour volumes in FES-deficient mice. These results implicate FES signaling downstream of KIT, in promoting MT reorganization during cell polarization and for chemotaxis of MCs towards tumour-derived SCF. Thus, FES is a potential therapeutic target to limit recruitment of stromal mast cells or macrophages to solid tumours that enhance tumour progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mast cell tumours (MCTs) are relatively common tumours of cats, and are the second most common cutaneous tumours in cats in the USA. While the primary splenic form of the disease is far less common, it is usually associated with more severe clinical signs. Signalment, clinical and survival characteristics of mast cell neoplasia were characterised in 41 cats. The most common tumour location was cutaneous/ subcutaneous head and trunk. Stage la was the most common tumour stage at first diagnosis (n = 20), followed by stage 4 (both stage 4a and stage 4b; n = 10). Of 22 cats that underwent excisional biopsy, mast cell neoplasia recurred in four cats during the study period. Three of the 41 cats presented with simultaneous cutaneous and either splenic or lymph node tumours. A comparison between cats with only cutaneous tumours (n = 30) and those with tumours involving the spleen or lymph nodes (n = 11) showed longer survival times for the cutaneous-only group (P = 0.031). Twelve of the 41 cats died of mast cell neoplasia during the study period. When a subgroup of cats with only cutaneous tumours (no lymph node or visceral involvement) were divided according to whether there were multiple (five or more) tumours (n = 6) or a single tumour (n = 19), cats with single tumours survived longer than those with multiple tumours (P = 0.001). Solitary cutaneous feline MCTs without spread to the lymph nodes usually manifest as benign disease with a relatively protracted course. However, multiple cutaneous tumours, recurrent tumours and primary splenic disease should receive a guarded prognosis due to the relatively short median survival times associated with these forms of the disease. (C) 2006 ESFM and AAFR Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose The role played by the innate immune system in determining survival from non-small-cell lung cancer (NSCLC) is unclear. The aim of this study was to investigate the prognostic significance of macrophage and mast-cell infiltration in NSCLC. Methods We used immunohistochemistry to identify tryptase+ mast cells and CD68+ macrophages in the tumor stroma and tumor islets in 175 patients with surgically resected NSCLC. Results Macrophages were detected in both the tumor stroma and islets in all patients. Mast cells were detected in the stroma and islets in 99.4% and 68.5% of patients, respectively. Using multivariate Cox proportional hazards analysis, increasing tumor islet macrophage density (P < .001) and tumor islet/stromal macrophage ratio (P < .001) emerged as favorable independent prognostic indicators. In contrast, increasing stromal macrophage density was an independent predictor of reduced survival (P = .001). The presence of tumor islet mast cells (P = .018) and increasing islet/stromal mast-cell ratio (P = .032) were also favorable independent prognostic indicators. Macrophage islet density showed the strongest effect: 5-year survival was 52.9% in patients with an islet macrophage density greater than the median versus 7.7% when less than the median (P < .0001). In the same groups, respectively, median survival was 2,244 versus 334 days (P < .0001). Patients with a high islet macrophage density but incomplete resection survived markedly longer than patients with a low islet macrophage density but complete resection. Conclusion The tumor islet CD68+ macrophage density is a powerful independent predictor of survival from surgically resected NSCLC. The biologic explanation for this and its implications for the use of adjunctive treatment requires further study. © 2005 by American Society of Clinical Oncology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyperactive inflammatory responses following cancer initiation have led to cancer being described as a 'wound that never heals'. These inflammatory responses elicit signals via NFκB leading to IL-6 production, and IL-6 in turn has been shown to induce epithelial to mesenchymal transition in breast cancer cells in vitro, implicating a role for this cytokine in cancer cell invasion. We previously have shown that conditioned medium derived from cancer-associated fibroblasts induced an Epithelial to Mesenchymal transition (EMT) in PMC42-LA breast cancer cells and we have now identify IL-6 as present in this medium. We further show that IL-6 is expressed approximately 100 fold higher in a cancer-associated fibroblast line compared to normal fibroblasts. Comparison of mouse-specific (stroma) and human-specific (tumor) IL-6 mRNA expression from MCF-7, MDA MB 468 and MDA MB 231 xenografts also indicated the stroma rather than tumor as a significantly higher source of IL-6 expression. Mast cells (MCs) feature in inflammatory cancer-associated stroma, and activated MCs secrete IL-6. We observed a higher MC index (average number of mast cells per xenograft section/average tumor size) in MDA MB 468 compared to MDA MB 231 xenografts, where all MC were observed to be active (degranulating). This higher MC index correlated with greater mouse-specific IL-6 expression in the MDA MB 468 xenografts, implicating MC as an important source of stromal IL-6. Furthermore, immunohistochemistry on these xenografts for pSTAT3, which lies downstream of the IL-6 receptor indicated frequent correlations between pSTAT3 and mast cell positive cells. Analysis of publically available databases for IL-6 expression in patient tissue revealed higher IL-6 in laser capture microdissected stroma compared to adjacent tissue epithelium from patients with inflammatory breast cancer (IBC) and invasive non-inflammatory breast cancer (non-IBC) and we show that IL-6 expression was significantly higher in Basal versus Luminal molecular/phenotypic groupings of breast cancer cell lines. Finally, we discuss how afferent and efferent IL-6 pathways may participate in a positive feedback cycle to dictate tumor progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cultured rat embryonic skin fibroblasts phagocytosed rat mast cell granules added to the medium or released from co-cultured mast cells by rabbit anti-rat IgE or Compound 48/80. Electron microscopy of fibroblasts incubated with mast cell granules revealed that granules adjacent to the plasmalemma were engulfed by long, thin cytoplasmic processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atherosclerosis is an inflammatory disease progressing over years via the accumulation of cholesterol in arterial intima with subsequent formation of atherosclerotic plaques. The stability of a plaque is determined by the size of its cholesterol-rich necrotic lipid core and the thickness of the fibrous cap covering it. The strength and thickness of the cap are maintained by smooth muscle cells and the extracellular matrix produced by them. A plaque with a large lipid core and a thin cap is vulnerable to rupture that may lead to acute atherothrombotic events, such as myocardial infarction and stroke. In addition, endothelial erosion, possibly induced by apoptosis of endothelial cells, may lead to such clinical events. One of the major causes of plaque destabilization is inflammation induced by accumulated and modified lipoproteins, and exacerbated by local aberrant shear stress conditions. Macrophages, T-lymphocytes and mast cells infiltrate particularly into the plaque’s shoulder regions prone to atherothrombotic events, and they are present at the actual sites of plaque rupture and erosion. Two major mechanisms of plaque destabilization induced by inflammation are extracellular matrix remodeling and apoptosis. Mast cells are bone marrow-derived inflammatory cells that as progenitors upon chemotactic stimuli infiltrate the target tissues, such as the arterial wall, differentiate in the target tissues and mediate their effects via the release of various mediators, typically in a process called degranulation. The released preformed mast cell granules contain proteases such as tryptase, chymase and cathepsin G bound to heparin and chondroitin sulfate proteoglycans. In addition, various soluble mediators such as histamine and TNF-alpha are released. Mast cells also synthesize many mediators such as cytokines and lipid mediators upon activation. Mast cells are capable of increasing the level of LDL cholesterol in the arterial intima by increasing accumulation and retention of LDL and by decreasing removal of cholesterol by HDL in vitro. In addition, by secreting proinflammatory mediators and proteases, mast cells may induce plaque destabilization by inducing apoptosis of smooth muscle and endothelial cells. Also in vivo data from apoE-/- and ldlr-/- mice suggest a role for mast cells in the progression of atherosclerosis. Furthermore, mast cell-deficient mice have become powerful tools to study the effects of mast cells in vivo. In this study, evidence suggesting a role for mast cells in the regulation of plaque stability is presented. In a mouse model genetically susceptible to atherosclerosis, mast cell deficiency (ldlr-/-/KitW-sh/W-sh mice) was associated with a less atherogenic lipid profile, a decreased level of lipid accumulation in the aortic arterial wall and a decreased level of vascular inflammation as compared to mast-cell competent littermates. In vitro, mast cell chymase-induced smooth muscle cell apoptosis was mediated by inhibition of NF-kappaB activity, followed by downregulation of bcl-2, release of cytochrome c, and activation of caspase-8, -9 and -3. Mast cell-induced endothelial cell apoptosis was mediated by chymase and TNF-alpha, and involved chymase-mediated degradation of fibronectin and vitronectin, and inactivation of FAK- and Akt-mediated survival signaling. Subsequently, mast cells induced inhibition of NF-kappaB activity and activation of caspase-8 and -9. In addition, possible mast cell protease-mediated mechanisms of endothelial erosion may include degradation of fibronectin and VE-cadherin. Thus, the present results suggest a role for mast cells in destabilization of atherosclerotic plaques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: the aim of this study was to quantify mast cells at different time intervals after partial Achilles tendon rupture in rats treated with low-level laser therapy (LLLT). Background data: There is a high incidence of lesions and ruptures in the Achilles tendon that can take weeks and even months to heal completely. As the mast cells help in the healing repair phase, and LLLT has favorable effects on this tissue repair process, study of this modality on the quantity of mastocytes in the ruptured tendon is relevant. Methods: Sixty Wistar rats were subjected to partial Achilles' tendon rupture by direct trauma, randomized into 10 groups, and then divided into the group treated with 80mW aluminum gallium arsenide infrared laser diode, continuous wave, 2.8W/cm(2) power density, 40J/cm(2) energy density, and 1.12J total energy, and the simulation group. Both the groups were subdivided according to the histological assessment period of the sample, either 6h, 12h, 24h, 2 days, or 3 days after the rupture, to quantify the mastocytes in the Achilles' tendon. Results: the group subjected to LLLT presented a greater quantity of mastocytes in the periods of 6h, 12h, 24h, 2 days, and 3 days after rupture, compared with the simulation groups, but differences were detected between the sample assessment periods only in the simulation group. Conclusions: LLLT was shown to increase the quantity of mastocytes in the assessment periods compared with the simulation groups.